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Outline

• Two issues for LC: energy and luminosity

• RF systems 
– Modulators, klystrons, cavities and test facilities

• Luminosity issues
– Parameters
– Damping rings and sources
– Main linac dynamics and alignment
– Beam delivery systems
– IP issues



RF Schematic



X-Band RF System

NLCTA RF system (ZDR, 1996):
– Conventional PFN modulator (500 kV, 500 A, 1.5 µs)
– 50 MW / 1.5µs solenoid-focused klystrons
– SLED-II pulse compression
– DDS structures work at gradients up to 45 MV/m

→ Tested, could be used to build a 500 GeV collider

Improvements to reduce cost and improve performance:
– Solid state modulator (500 kV, 2000 A, 3 µs)
– 75 MW / 3µs PPM-focused klystrons
– DLDS pulse compression
– RDDS structures - 70 MV/m

→ Aimed to optimize performance and cost at 1 TeV



Modulators

• Both NLC and TESLA have modulator designs based on
solid state IGBT’s

• Switch MW’s of power
and deliver lots of energy
– NLC: 500 kV, 2000 A, 3.1 µs
– TESLA: 12 kV, 1600 A, 1.7 ms

• NLC prototype solid 
state modulator
testing started in
October 

• Problems with IGBT
damage being solved

Water Load

26-October-2001

500 kV



NLC Klystrons

• Over 14 X-band klystrons built and operated
– XL4’s are work horse for NLCTA and other test stands

(many tubes with 10 ~ 20,000 hours)

• Periodic Permanent Magnet (PPM) for increased 
efficiency  Focusing Peak Power Pulse length Rep. rate 

XL4  Solenoidal 50 MW  1.5 us 120 Hz 
    10 tubes @ 10,000 hrs. 50 MW  1.5 us 120 Hz 
  75 MW 1.5 us 120 Hz 
  50 MW 2.4 us 120 Hz 
X5011 PPM 50 MW 1.5 us 60 Hz 
     1 tube (1996) 60 MW 1.5 us 60 Hz 
 50 MW 2.4 us 60 Hz 
XP1 PPM 75 MW 1.5 us No 

cooling 
      1 tube (2000) 75 MW 3.1 us  
 90 MW 0.5 us  
XP3 PPM 75 MW 3.2 us 60 Hz 
Tests started 2/02:       DC 480 kV 3.2 us 60 Hz 

     RF       75 MW 2.8 us 10 Hz 
 

Present goal: 75 MW 
with 3 µs pulse width 
at 120 Hz or greater

Recent success at 
KEK with 75 MW
and 1.5 µs looks good

XP3 results look good



Energy: RF Distribution

• Delay Line Distribution System (DLDS)
– Complicated rf components to exchange modes and direct power
– Massive vacuum system
– Completely passive rf switching
– Next step: validate rf power handling (600 MW in 400 ns)
– Systems tests in 2003 and 2004

• SLED-II – previous pulse compression system
– Less efficient than DLDS (65% instead of 85%)
– Many similar power handling issues
– Maximum power tested thus far is 500 MW at 150 ns and 400 MW 

at 240 ns
– Operating on NLCTA since 1996



NLC RF System Tests
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NC Accelerator Structures

• Not near gradient limits for copper
– Single cell cavities hold gradients of ~ 200 MV/m
– ‘Short’ structures processed rapidly to >100 MV/m

• Built many 1.3-m ~ 1.8-m structures
– Meet fabrication tolerances
– Studied wakefield damping extensively – damping sufficient although not at 

desired values due to trivial errors, solutions in-hand
– Stable operation limited to 40 ~ 45 MV/m

• Processing model – increase voltage until breakdown
– Not strongly coupled to cleanliness - different than SC models
– Small arcs clean surface / large arcs damage surface
– Difference between the two is how much energy is deposited à low vg
– Some ‘damage’ is acceptable however need to extrapolate out 10~20 years
– Other models predict constant damage – inconsistent with single cell data



Low Group Velocity Test Structures

Built 9 traveling wave test structures
Rapid processing to >70 MV/m 
DS2S 1500 hrs @ 50-70 MV/m 
Vg 5% 500 hrs @ 65-75 MV/m
Two subsequent traveling wave structures 
operated at 70 MV/m with peak 85 MV/m

DS2S
52 cells DS2

20 cm test
5% to 4% vg 

105 cm test
5% to 1% vg



Gradient Issues

• Low group velocity structures  rapidly process to ~70 MV/m

• Small damage 
during initial 
processing seen
with beam

• Minimal damage
during 
subsequent
operation

• Breakdown rate
is few per hour, 
i.e. few per 
200,000 pulses



NLC Accelerator Structures

• Built many test structures to study gradient limitation
– Much better performance with low vg than original NLC design
– Peak gradients of 80 to 90 MV/m and 

operate at 65 to 75 MV/m
– Trip rates look OK
– Damage looks OK

• Next step: combine NLC-style 
wakefield control with high gradient 
– Demonstrated single and multi-bunch wakefield control in 1.8-m structures
– Building two pairs of ‘NLC’ style structures with single bunch wakefield 

control and detuning for long-range wakefield
• first pair with normal couplers and the second with in-line tapered couplers to 

reduce Es at the input and output couplers

– Will test NLC structures with both single and multi-bunch wakefield control 
by the end of 2002
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NLC Test Accelerator

Operated 
since 1996

5000 hrs 
just this year

Essentially
NLC-500 rf
system from 
1996:

• Dual 50MW 
klystrons

• SLED-II

• 1.8 m long 
structures



2001 JLC/NLC Parameters 

CMS Energy (GeV)
Site US Japan US Japan

Luminosity (1033) 20 25 30 25
Repetition Rate (Hz) 120 150 120 100

Bunch Charge (1010)
Bunches/RF Pulse
Bunch Separation (ns)
Eff. Gradient (MV/m)

Injected γεx / γεy (10-8)

γεx at IP (10-8 m-rad)

γεy at IP (10-8 m-rad)

βx / βy at IP (mm)

σx / σy at IP (nm)

θx / θy at IP (nm)

σz at IP (um)

Υave
Pinch Enhancement
Beamstrahlung δB (%)
Photons per e+/e-
Two Linac Length (km)

Stage 1 Stage 2
500 1000

0.75

1.4
48.5

192

300 / 2

360

4

8 / 0.11

219 / 2.3

17 / 20

1.51

12.6
1.3
5.4

243 / 3.0

32 / 28

110
0.14

300 / 2

360

4

13 / 0.11

1.3
25.8

0.75

110
0.29
1.47
8.9

192
1.4

48.5

• High current parameters

• Additional parameters
with slightly lower charge 
0.65x1010 and smaller 
beta functions for similar 
luminosity

• Low energy parameters
also exist for operation
at the Z, W, low-mass
Higgs, and top



Luminosity: Building on the SLC
 IP Beam Size vs  Time  
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New Territory in Accelerator Design and Operation
• Extensive feedback & online modeling
• Correction techniques expanded from first-order (trajectory) to include

second-order (emittance), and from hands-on by operators to fully 
automated control

“It’s the diagnostics, stupid”
“The damping rings are the source of all evil”



Electron and Positron Sources

• Both are based on ‘conventional’ sources used at the SLC

• Polarized electron source had limitation due to ‘Surface 
Charge Limit’
– Electrons would be trapped at the surface generating a potential

barrier for further electrons
– Problem has been solved by varying the doping with depth
– Laser system is not commercially available but should be possible

• SLC positron target was damaged at end of the SLC run
– Diagnostics at LANL and modeling at LLNL
– Design with 3 interleaved targets for robust design
– Also looking at TESLA-style undulator-based system

• Need a number of modifications to make system robust



SLAC Positron Target

Beam Direction

WRe

Target Exit Face

≈3 mm



Damping Rings 
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NLC rings are similar to present generation of light sources
(similar energies, emittances, sizes, and currents)

Damping rings probably have most complex acc. physics issues



Damping Ring Issues

• Achieving the vertical emittance (~ 0.5% coupling ratio) 
requires much better alignment than typically in storage rings

• Incoherent space charge tune shift is ~ 0.05!
• Intrabeam scattering becomes significant with high densities
• Touschek lifetime is roughly 1 minute
• Old instabilities:

– Microwave – bursting instability has huge effect downstream
– Transient loading – impacts bunch compressor designs
– Coupled bunch – need feedback with very high power but low noise 

in transverse and longitudinal

• New instabilities:
– Electron cloud – initial simulations show tune spreads ~1
– Ions – fast coupled bunch growth rates with few solutions



Tune Spreads in Beams

• Concerns about control of vertical emittance
• Estimates for NLC and TESLA predict electron cloud 

induced incoherent tunes 
spreads of 0.30 
and 8, respectively

• Estimates predict
ion induced 
tunes spreads of
0.01 and 0.06 in
NLC and TESLA
– This is bad 

enough! -3.50E+13
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ATF Damping Ring at KEKATF Damping Ring at KEK
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Linac Dynamics

• Two separate issues: Beam BreakUp (BBU) and ‘static’ 
alignment or emittance dilutions
– BBU quasi-exponential amplification of incoming trajectory errors

• Well understood and well simulated!
• Multi-bunch BBU seen in 60’s in SLAC linac
• Single bunch BBU solved in SLC in mid-80’s
• Need to measure/model wakefields

– Quasi-static emittance dilutions
• Cavity alignment
• Magnet alignment
• Rf deflections
• Stray fields
• Use beam-based alignment!
• Techniques developed and tested at SLC, FFTB, ASSET, and 

elsewhere!



BBU: Wakefield Summary

• Wakefields have been measured the ASSET facility at 
SLAC and the TTF at DESY using beam
– Wakefields are larger than design although sufficient
– In last three NLC structures, errors were due to known construction 

errors while at DESY they due to a miscalculation: 
• DDS1: a 50 um offset arose when bonding 25 cm lengths
• DDS3: a set of cells were manufactured with 10 MHz frequency error
• RDDS1: differential expansion of ceramic/copper at ends when 

diffusion bonding and again when bonding stainless vacuum manifold

• Long-range wakefield is no longer thought to be a limiting 
problem but must be careful in design and fabrication!
– Devil is in the details!

• Both LC’s aims to measure high gradient cavities in 1 yr
• Working on wire measurement to rapidly qualify structures



Structure Design Issues

Precision wakefield measurements agree well 
with model prediction

Fabrication achieved frequency errors 0.5 
MHz rms (tolerance 3 MHz)

Structure BPM achieved < 1 µm centroid 
resolution (tol. 20 µm) – essential for alignment

Wakefield model & measurement

Fabrication tolerances

S-BPM resolution



Beam-Based Alignment (ε Tuning)

• To preserve emittance must correct net effect of 
individual dilution sources

• ‘Local’ correction - directly correct dilution sources
– Beam-based alignment – tested SLC; FFTB; other beam lines
– Most robust solution / least sensitive to energy or strength errors

• ‘Quasi-Local’ correction - correct dilution effects over 
short distance, i.e. betatron wavelength
– Dispersion-Free steering – tested in SLC; LEP; other rings
– Based on ‘measurements’ of dilution / sensitive to systematics

• ‘Global’ correction - tune emittance using direct ε
diagnostics
– Directly corrects desired quantity / sensitive to phase advance –

tested SLC



Emittance Correction (Global Correction)

• Most sources of emittance dilution come from conservative 
processes: transverse wakefields, dispersive errors, etc.

⇒6-D phase space does not increase 
(only the projected phase space increases)

• Any conservative dilution  
can be removed but 
this is difficult after 
phase space mixing 
from betatron 
frequency variations

• Filamentation is 
significant in NLC



Alignment Tolerances

• Alignment tolerances in NLC/JLC are very tight!
– 1 - 10 µm in the main linacs and similar in the final focus

• Lesson from SLC: diagnostics and control
– Want 300 nm Beam Position Monitor resolution

• FFTB/SLC FF striplines have 1 µm resolution
• FFTB RF cavity BPM had 40 nm resolution

– Want beam size resolution of 300 nm
• SLC laser wire had between 500 and 230 nm resolution
• FFTB ‘Shintake’ BSM had 40 nm resolution

– Want magnet movers with 50 nm step size
• FFTB magnet movers have 300 nm step sizes

• With sufficient diagnostics and controls - accelerator 
becomes big feedback loop but easy to diagonalize

• Stability very important for convergence!



Rf Cavity Alignment

• NLC structures (cavities) must be aligned to beam within 10 µm 
rms for 20% ∆ε
– Every structure has two rf-BPMs with better than 2 µm accuracy
– Short-range wakefields depend on average of structure offset 
– Average position of the 6 structures on an rf girder and move girder end-

points with remotely controlled movers

• TESLA cavities must be aligned with 500 µm rms for 15% ∆ε
– Achieved +/- 250 µm alignment within cryostat
– But effects add à tolerance for 12 cavities in cryostat ~ 140 µm
– Effect is worst at ¼λβ = 150 m à tolerance for cryostats ~ 45 µm
– Either add read-backs on HOM dampers and steer beam to center of 

cavities or use global emittance bumps like those used in SLC to cancel 
dilutions

– RF deflections imposes 100 µrad tolerance on cavities for 5% ∆ε



Quadrupole Alignment
• Quadrupoles must be aligned using beam derived information

• Tolerance corresponds to roughly 100 µm ‘dispersion’ error 
(dispersion is not exact in linac with varying energy spread)
– With 1 µm BPM resolution, 100 µm dispersion not so bad!

• Desire very local correction (align every quadrupole perfectly) 
with a procedure that does not 
interrupt luminosity 
– Measuring quadrupole center shifts

at SLAC and FNAL
– Find <1µm motion in EM quads

but larger in PM quads
– Investigating alternate routes (DF 

steering, ε-bumps, ballistic corr.)
– Thinking about beam tests



FFTB Quadrupole Alignment

• Used quadrupole shunting technique
– Fit residuals ranged from 2 µm to 30 µm at the end of the beam line

• FFTB optics poorly designed for beam-based alignment
• Ran out of BPMs to measure deflected trajectory!

– Dispersion measurements 
show errors in 1st two regions
< 7 µm after alignment

• Confirms technique

– NLC designed for BBA
with better diagnostics
and smoother optics

• Would expect a factor of
2 ~ 3 improvement

– TESLA has poorer ratio of
tolerance to diagnostic res.



Alignment Procedure in NLC

• Conventional alignment at installation and after long downs
– 100 µm rms variation of magnets and girders over 100 m lengths

• Establish ‘gold’ trajectory using local and/or quasi-local correction 
techniques 
– Quadrupole shunting techniques align BPMs to quadrupoles at the level of 1 

to 20 µm depending on variation of quadrupole centers
– Dispersion-Free steering to establish a ‘gold’ trajectory which minimizes 

the dispersion - need to correct η to 100 µm level

• Steer to ‘gold’ trajectory as magnets move (few hr timescale)
– Use feedback to maintain trajectory between steering

• Beam-bumps to tune emittance based on emittance meas.
– Ideally create ‘dither’ feedback to tune emittance bumps



Quad with BPM:
0.3 µm x/y resolution

Quad with BPM:
0.3 µm x/y resolution

RF structures, each with
2 BPMs (1 each end), 
5 µm x/y resolution

Remote-controlled magnet
translation stage, x/y degrees 
of freedom, 50 nm step size

Remote-controlled girder
translation stage, x/y degrees of 

freedom each end

Beam-Based Alignment and Steering 
Equipment



Position Monitor Resolution
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Need factor of 3 better for NLC

FFTB Cavity BPMs: 
25 nm resolution @ 6 x 109 / bunch

Present NLC baseline uses cavity BPMs
in main linac



Mover Resolution

FFTB Magnet Mover:  
0.3 µm step size

Need factor of 6 better -- attainable  
with micro-stepping  technology

Test of FFTB Magnet Mover Single 
Step performance:  expected (solid)

laser interferometer (dashed)



Beam Delivery Systems

• New final focus system has a much more compact design

– Final Doublet is required to provide the necessary demagnification

– Chromaticity is cancelled locally by two sextupoles interleaved 
with the FD, a bend upstream generates dispersion across FD

– Geometric aberrations of the FD sextupoles are cancelled by two 
more sextupoles placed in phase with them upstream of the bend

• System adopted by NLC and CLIC – TESLA considering



Advantages of New FF

• New FF is only 700m for 2.5 Tev beams 

• Longer L* ~ 4 m to ease detector integration

• Smaller aberrations reduce tail generation

• Octupole doublets focus in both planes simultaneously

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

  

   X-Y  at  QD0

Octupoles ON

Octupoles OFF

Y
 (

m
m

)
X  (mm)

-15 -10 -5 0 5 10 15 20
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
 

 

   X-X'  at  QD6 

Octupoles ON

Octupoles OFF

X
' (

m
ra

d)

X  (mm)



Laser-Interferometer Beam 
Size Monitor

Principle:
Typical Measurement:

s y = 77 ± 7 nm



Final Focus Test Beam at SLACFinal Focus Test Beam at SLAC
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of 60-70 nm at IP with laser 
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Demonstrated precise diagnostics!

FFTB IP



Ground Vibration Data



SLAC Tunnel Drift Studies 

Horizontal and vertical displacement of the SLAC linac 
tunnel and external atmospheric pressure from Andrei Seryi

• Motion has strong 
correlation with 
external 
atmospheric 
pressure and tides

• Correlation seen
between ground
characteristics and
slow motion

• These slow 
motions are OK



NLC IR Layout



Stabilization

• Typical vibration tolerances are 1000x tighter than 
alignment tolerances ~ 10 nm

• Vibration tolerance on 
final focusing magnets 
is ~1nm
– Must stabilize these 

components!

– Two approaches: 
• Optical anchor (tie

elements to bedrock 
with an interferometer

• Inertial stabilization 



Possible California Site Option

127



Possible Illinois Site Options

North-South option

East-West option



Reliability Issues

• Essential to understand!
– Significant limitation in SLC operation

• Would take 3 ~ 4 times the length of each down time to recover luminosity!

• New LC are being designed to avoid known problems
– Multiple (redundant) power supplies
– Overhead in klystron / modulator populations
– Redundant electrical / cooling systems
– Big questions regarding TESLA single tunnel with accesses/10 days

• Radiation levels have only been checked at 17 MV/m (turned off 1 cavity) 
• Operation model based on 40,000 hr klystron lifetime − only operated for 

~2000 hrs at 25~40% power and 1 Hz
• Modulator cables; temp stability; low level rf electronics

• Must qualify reliability of all components, especially those in 
the tunnel!



International Milestones

– The United States …
• Strong recommendation in Sub-Panel Report.
• The “New Reality” in Washington since September 11.
• DOE, NSF, OSTP will be testing support of broader science community.
• U.S. Linear Collider Steering Group.

– German Wissenschaftsrat reviewing TESLA along with other major 
physics initiatives (e.g. European Spallation Source), and expected to 
report in Summer 2002.

– Japanese (KEK) will submit request for JLC Project Preparatory 
funds (rough equivalent of U.S. Conceptual Design) in Fall 2002.
Monbusho must weigh against other initiatives (e.g. ITER).

– Loew Committee compilation of design and R&D at EPAC in Paris 
in June 2002.

– International steering group to be formed

ECFA

ACFA

ICFA

HEPAP



2001 ICFA Technical Review

• Compare four projects: CLIC, JLC (C), NLC/JLC (X), TESLA
– 1) Whether any or all of these four approaches can lead to a functional project with 

the required design and operating parameters, 
– 2) Further R&D that is required 

ILC-TRC Steering Committee
Chair:  Gregory Loew (SLAC)

Members:  Reinhard Brinkmann (DESY)
Gilbert Guignard (CERN)
Tor Raubenheimer (SLAC)
Kaoru Yokoya (KEK)

• Form two working groups:
– Energy (primarily rf technology but include reliability and upgrade routes)
– Luminosity (try to evaluate the real luminosity potential)

• Present draft at the European Particle Accelerator Conference, June 2002



Summary

• NLC rf system is making great progress
– Rf systems for 500 GeV cms is close to being ready

• Need to test final prototypes for modules, HOM damping, couplers or pulse 
compression, and klystrons

• Need to gain operational time at nominal gradients

– Rf cavities for 1000 GeV cms will probably be ready in 2003

• Luminosity issues are a larger concern!
– Damping rings are essential for stable operation

• Lots of potential problems – still largely not understood

– Both linear collider designs require complicated BBA procedures
• FFTB and SLC developed instrumentation and techniques necessary for 

beam-based alignment

– Vibration of final doublet requires active stabilization
– Beam-beam effects are significant and may force reduction in 

luminosity in both designs


